

Institut für Biomedizinische Technik und Informatik

EEG/MEG: a contribution of the electromagnetic research to the clinical diagnostics

Jens Haueisen

Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Germany

Department of Neurology, Friedrich Schiller University, Jena, Germany

Overview

- 1. Introduction
- 2. Signal genesis and measurement techniques
- 3. Influence of anisotropic volume conduction
- 4. Information transfer in the brain

Introduction

Reconstruction of electric current sources in the brain

- Basic research: How does the brain work?
- Clinical application: Neurology, Psychiatry, Pediatrics, Cardiology, ...
- Other: BCI, Prosthetics, ...

Biomagnetometer

Systems specific for fetal measurements

Multipurpose systems

Systems specific for brain measurements

Andrä & Nowak, Magnetism in Medicine, Wiley, 2007

Dry electrodes with TiN nanocoating

Fiedler et al. Meas Sci Tech, 2011, in press

EEG measurements

Impedance measurement

EEG measurements

EEG cap

Fiedler et al. Meas Sci Tech, 2011, in press

Compliant mechanism for electrode placement

Overview

- 1. Introduction
- 2. Signal genesis and measurement techniques
- 3. Influence of anisotropic volume conduction
- 4. Information transfer in the brain

Forward problem

Computation of field/potential at sensors arising from given sources

Comparison of numerical methods

2.5-D methods (BEM / MMP)

pro

- + Discretization of surfaces
- + Model construction and computation

3-D methods (FEM / FDM)

pro

- + Modeling of inhomogeneities
- + Modeling of anisotropy
- + Properties for each element

Introduction

- How does volume conduction influence source estimation?
- How does anisotropy influence source estimation?

Institut für Biomedizinische Technik und Informatik

Güllmar et al., IEEE TBME, 53:1841-1850, 2006

SimBio and NeuroFEM

FEM model II

- Resolution of 1 mm³
- 3.2 Mio elements
- Node shift

Wolters et al. IEEE TBME, 54:1446-1453, 2007

Güllmar et al., Neuroimage, 2010

Conductivity and anisotropy data

Tensor of conductivity und tensor of diffusion

 $s^{T} = k \times D$ $k = k(\mathcal{S}_{\rho}, d_{\rho})$

Tuch et al., PNAS, 98:11697-11701, 2001

Conductivity and anisotropy data

Institut für Biomedizinische

Forward simulations with isotropic and anisotropic human head models

Results: *Correlation:* above 0.98 *Magnitude:* more than 50% change

Tissue anisotropy seems to have a minor influence on source localization but a major influence on dipole strength estimation.

Haueisen et al., Neuroimage 15:159-166, 2002

- 5 tissue types
- 3.2 million cubic elements (1mm)
- 130 electrodes
- 25,000 dipoles perpendicular to cortical surface
- anisotropies of 1:2, 1:5, 1:10 and 1:100

Comparison of isotropic and anisotropic model output by RDM and MAG mapped to each dipole position

right hemisphere

left hemisphere

Relative Difference Measure – outside view

right hemisphere

left hemisphere

MAG – outside view

Dipole displacement if neglecting the anisotropic conductivity of 1:10.

Conclusions sensitivity analysis

- Anisotropic volume conduction influences source strength and source orientation estimation more than source location estimation.
- Local conductivity properties in the vicinity of the source crucially influence source estimation.
- Model errors both on a local and a global scale are not Gaussian.

Overview

- 1. Introduction
- 2. Signal genesis and measurement techniques
- 3. Influence of anisotropic volume conduction
- 4. Information transfer in the brain

Inverse problem

Estimation of model parameters based on observed variables.

Measured data

Introduction

Understanding information transfer in the brain

Potential application areas:

- Therapeutic Systems
- BCI
- Prosthetics
- Etc.

Investigation on cortical 600 Hz Oscillations

Introduction

Median nerve stimulation

Routine procedure in the clinic

Other peripheral nerves possible

Philips-Biomagnetometer

Fast oscillatory activity (around 600Hz) overlays low frequency (N20, P25) activity of the somato-sensory evoked field/potential.

MEG

Initial cortical components

SVD in the time interval of N20 / P25 (filter: 450 - 750 Hz). First two spatial HF components.

Source localization

Modeling of the head

Skin: 0.33 S/m; skull: 0.0042 S/m; brain: 0.33 S/m Triangle side length: 7 mm

Electrode and gradiometer positions

BEM model

Source localization

Cross section at tangential source

Cross section at radial source

Source localization

The radial dipole is more superior than the tangential dipole (p<0.05, 3-D distance is 13.5 ± 6 mm).

The amplitude maximum of the tangential dipole is earlier than the maximum of the radial dipole $(1.7\pm1.8ms;$ p<0.02).

Models describing the coupling between Brodmann areas 3b and 1

Input impulse originating from the thalamus is delivered to cortical area 3b and 1 for all three models

- model 0: no coupling between 3b and 1
- model 1: feed forward coupling between 3b and 1
- model 2: mutual coupling between 3b and 1

$$\begin{aligned} & & = m_{1}^{*} + e_{11} x + e_{12} y + e_{13} z (t - 0.0012), \ x(0) = *(0) = 0 \\ & & & = m_{2}^{*} + e_{21} x + e_{22} y + e_{23} z (t - d), \ y(0) = *(0) = 0 \\ & & z(t) = e^{-\frac{(t - m)^{2}}{2s^{2}}} \times \cos(2pv t + j) \end{aligned}$$

Variables: x: Brodmann 3b; y: Brodmann 1; z: Thalamus 13 unknown parameter: $\mathbf{p} = (m, m, m_2, s, v, j, e_{11}, e_{12}, e_{13}, e_{21}, e_{22}, e_{23}, d)$ Zeroing of e_{12} and e_{21} yields model 0. Zeroing of e_{12} yields model 1.

Dipole activation and model predicted curves

BMT

Institut für Biomedizinische

Technik und Informatik

Mean cross validation errors

Subject	1	2	3	4	5	6	7	8	9	10
Model 0	0.309	0.547	0.547	0.585	0.647	0.165	0.153	1.532	0.977	0.019
Model 1	0.079	0.415	0.079	0.581	0.657	0.149	0.006	0.987	1.000	0.014
Model 2	0.077	0.422	0.072	0.085	0.122	0.122	0.005	0.192	0.130	0.005

Difference between the model predicted dipole activation curves and the dipole activation curves from source reconstruction.

model 2 vs. 1: p=0.02 model 2 vs. 0: p=0.002 model 1 vs. 0: p=0.001

Summary

- First combined EEG/MEG study of 600 Hz activity.
- Bidirectional information transfer is opposed to the assumed serial information processing in low frequency signals.
- Anatomical evidence for reciprocal pathways between areas 3b and 1 in monkey (Felleman and Van Essen 1991; Burton and Fabri 1995; Morecraft et al. 2004).
- Second-order differential equation modeling motivated by appeal to neural-mass models (Lopes da Silva et al. 1974; Freeman 1975).

Thanks to:

...

Patrique Fiedler Stefan Griebel Stephan Lau Theresa Götz Silvia Müller Lars Flemming

The SimBio Team:

Daniel Güllmar Mario Liehr Thomas Milde Herbert Witte Hartmut Brauer Jürgen R. Reichenbach

Carsten Wolters Alfred Anwander Thomas Knösche Matthias Dümpelmann Ceon Ramon Paul H. Schimpf Carlos Fonseca Filipe Vaz David S. Tuch Van J. Wedeen John S. George John W. Belliveau

Financial support:

European Union, German Ministry of Science, German Research Council