

Linee di ricerca nelle Celle a Combustibile con tecnologia PEM

Massimo Guarnieri

Riunione Nazionale dei Ricercatori di Elettrotecnica Bologna 17/06/2011

Reazione e sottoreazioni

Elettrolisi inversa (reazione fortemente esogena), evitando l'effetto Hindenburg

Separazione della reazione in due sottoreazioni elettrochimiche –anodica e catodica–, riducendo la dinamica

$$H_2 \rightarrow 2H^+ + 2 e^-$$
$$\frac{1}{2}O_2 + 2H^+ + 2 e^- \rightarrow H_2O$$

Vantaggi e svantaggi

Generazione termoelettrica convenzionale

En. Chimica→Calore→En. Meccanica→En. Elettrica Pile a combustibile

En. Chimica \rightarrow En. Elettrica (+ calore)

Vantaggi

efficienza (vincoli di Carnot assenti) assenza di emissioni assenza di parti in movimento silenziosità ricarica rapida

Svantaggi

costo dei materiali attivi durata dei materiali attivi avvelenabilità dei catalizzatori cinetica chimica limitata

Tecnologie FC: AFC = Alkaline FC (Bacon)

- Elettrolita: soluzione acquosa di idrossido di potassio al 35÷50 o 85%, immobilizzata
- Combustibile: H₂
- Temperatura: 60÷120°C o 220°C
- Catalizzatore: Pt
- Densità di potenza: 0.15-0.4 W/cm²
- Potenze tipiche: 1-100 kW
- Rendimento: 60-70%

- Svantaggi:
 - Vita breve (ostruzione degli elettrodi con carbonati)
 - Costo elevato
- Applicazioni: NASA (Gemini/Apollo/S-Shuttle) ora dismesse
- Nuovi sviluppi: Flowing electrolyte AFC (elettrolita fluido, catalizzatore Pt-free)

Tecnologie FC: PAFC = Phosphoric Acid FC

- Elettrolita: acido fosforico al 85% immobilizzato
- Combustibile: H₂
- Temperatura: 180-200°C
- Catalizzatore: Pt
- Densità di potenza: 0.15-0.3 W/cm²
- Potenze tipiche: 50-1000 kW
- Rendimento: 40-50%
- Vantaggi:
 - Cogenerazione (η=80%)
 - Tecnologia matura
 - FC statiche più diffuse
- Svantaggi:
 - Start-up problematico
 - Uso statico servizio continuativo

Tecnologie FC: MCFC = Molten Carbonate FC

- Elettrolita: miscela di carbonati alcalini fusi
- Combustibile: H₂ o CH₄ o CO
- Temperatura: 600-650°C
- Catalizzatore: Ni
- Densità di potenza: 0.1-0.3 W/cm²
- Potenze tipiche: 100-100,000 kW
- Rendimento: 42-64%
- Vantaggi:
- Insensibili all'avvelenamento
- Cogenerazione (η=80%)
- Svantaggi:
 - Start-up problematico
 - Uso statico servizio continuativo

Tecnologie FC: SOFC - Solide Oxide FC

- Elettrolita tipico: ossido di zirconio, dopato con ossido di ittrio
- Combustibile: H₂ o CH₄ o CO
- Temperatura: 600-1000°C
- Catalizzatore: ossidi di perovskiti
- Densità di potenza: 0.25-0.35 W/cm²
- Potenze tipiche: 10-100,000 kW
- Rendimento: 50-60%
- Vantaggi:
- Insensibili all'avvelenamento
- Cogenerazione (η=90%)
- Svantaggi:
 - Start-up problematico
 - Uso statico servizio continuativo
 - Tenuta termica

Tecnologie FC: PEMFC - Polymer Electrolyte membrane FC (e DMFC – DEFC)

- Elettrolita: membrana polimerica sulfonata (Nafion)
- Combustibile: H₂ (o CH₃OH o C₂H₅OH)
- Temperatura: 20-90°C
- Catalizzatore: Pt (Ru)
- Densità di potenza: 0.3-0.1 W/cm²
- Potenze tipiche: 50-250 kW (o 50 W)
- Rendimento: 40-50% (o 10)
- Vantaggi:
- Start-up rapido, dinamica "elevata"
- Svantaggi:
 - Gestione dei fluidi complessa
 - Avvelenabilità
 - Costo elevato
 - Vita limitata

PEMFC – Campi di applicazione

Applicazioni stazionarie

• Unità generative autonome o a bassa connessione, con dinamiche elevate

• Unità da 4,5 kW

PEMFC – Campi di applicazione

Applicazioni mobili

- Trazione elettrica FCEV: tecnologia più idonea (7PQ-EU / DoE)
 - Mercedes, DC-Mercedes, Ford, GM, Honda, Kia, Mazda, Nissan, Suzuki, Toyota, Hyundai

PEMFC – Campi di applicazione

Studi e sviluppi avanzati

• Stazionari

- Energy hub = unità di generazione/consumo ad elevata autonomia
 - generazione da rinnovabili
 - accumulo in H₂
 - generazione con PEMFC
 - consumo
 - interconnessione ac o dc

Mobili

- Trazione elettrica lunare con PEMFC rigenerative (ESA)
 - accumulo di H_{2} , $O_2 e H_2 O$
 - generazione con PEMFC
 - docking energetico

Comportamento fisico

- Alimentazione dei reagenti (starving)
- Asporto dei prodotti (stragling)
- Controllo del trasporto (flooding)
- Controllo termico (aging)
- Condizionamento elettrico
- Supervisione di sistema

PEMFC – Competenze multidisciplnari

- Elettrochimica
- Ingegneria dei materiali
- Fluidodinamica (percolazione e microcanali)
- Termodinamica

- ELETTROTECNICA (Electrical Engineering):
- Sottosistemi di power management e supervisione
- Modellistica multifisica 1-2-3D di componenti e di FC
- Modellistica 0D elettrica di sistema
- Ottimizzazione strutturale di componenti e FC
- Ottimizzazione funzionale di sistema

PRIN

- PRIN 2006: DMFC
- PRIN 2008: PEMFC
 - Unità di Padova DIE (Stella)
 - Unità di Padova DiSC (Di Noto)
 - Unità di Salerno (Spagnuolo)
 - Unità di Venezia (Polizzi)

PRIN 2008 - Padova DiSC

 Direct polymer electrolyte membrane fuel cells: synthesis and study in prototype cells of hybrid inorganicorganic membranes and electrode materials

Research lines:

- Research Line 1. Development of hybrid inorganic-organic proton-conducting membranes for application in PEMFCs fuelled with hydrogen. Preparation, characterization and tests in single fuel cell
- Research Line 2. Development of advanced nanostructured electrocatalysts for the oxygen reduction reaction (cathode) for application in PEMFCs fuelled with hydrogen. Synthesis, characterization and tests in single fuel cell

PRIN 2008 - Padova DiSC - Research line 1

Membrane ^(a)	Log ₁₀ [Proton Conductivity / S cm ⁻¹] ^(b)
[Nafion/(ZrHf) _{0.05}]	-1.11
[Nafion/(ZrHf) _{0.10}]	-1.24
[Nafion/(ZrHf) _{0.15}]	-1.21
[Nafion/(SiHf) _{0.05}]	-2.04
[Nafion/(SiHf) _{0.10}]	-2.24
[Nafion/(SiHf) _{0.15}]	-2.39
Nafion 115 reference	-1.46

(a) "Core-shell" inorganic nanofillers: $ZrHf = [(ZrO_2) \cdot (HfO_2)_{0.25}]$;

 $SiHf = [(SiO_2) \cdot (HfO_2)_{0.28}]$

(b) Measurement based on broadband electric spectroscopy in sealed cell at T = 85°C.

PRIN 2008 - Padova DiSC - Research line 2

- Support made of Graphene nanoparticles (20 nm)
- Supported catalyst consists of carbon-nitrate electrocatalyst.
- Carbon-nitrate electrocatalyst are made of Graphene layers where less then 5% of carbon atoms are substituted with nitrogen.
- Thus nitrogen atoms in the Graphene layers form coordination nests for the metal nanoparticle active sites.

PRIN 2008 - Padova DiSC

Electrocatalyst	Pt Mass efficiency [g _{Pt/Pd} kW ^{-1 (a)}]
PdCoAu-CN _h 600	0.51
PdNi-CN _h 900	0.75
PtNi-CN _I 600/G	0.30
PtFe ₂ -CN ₁ 600/G	0.32
PtNi-CN _I 600/Ni	0.42
PtNi-CN _I 900/Ni	0.51
Pt/C reference (EC20)	1.12

(a) Measurement in single fuel cell at T = 85°C; RH = 100%; fuel = hydrogen; oxydant = pure oxygen; back pressure = 4 bar

PRIN 2008 - Padova DiSC

Bibliografia e altre informazioni:

www.chimica.unipd.it/lab_DiNoto/

Celle a combustibile dirette basate su membrane polimeriche a conducibilità protonica:

tecniche di controllo adattative e circuiti elettronici di potenza per il miglioramento delle prestazioni e l'allungamento del tempo di vita

- Temi di ricerca dell'Unità di Salerno
 - ✓ Modellazione della cella a combustibile
 - Elettronica di potenza dedicata al fuel cell system
 - ✓ Tecniche adattative per il controllo del flusso di O₂

- Modellazione della FC
- Sviluppo di un modello dedicato a un simulatore circuitale

Identificazione dei parametri della FC mediante EIS e osservatori dello stato

G.Spagnuolo, G.Petrone, S.V.Araujo, C.Cecati, E.Friis-Madsen, E.Gubia, D.Hissel, M.Jasinski, W.Knapp, M.Liserre, P.Rodriguez, R.Teodorescu, P.Zacharias: "Renewable energy operation and conversion schemes", IEEE Industrial Electronics Magazine, Vol.4, No.1, pp.38-51, March 2010.

C.A.Ramos-Paja, R.Giral, J.Romano, A.Romero, L.Martinez-Salamero, G.Spagnuolo: "A PEM fuel cell model featuring oxygen excess ratio estimation and power electronics interaction", IEEE Transactions on Industrial Electronics, Vol.57, No.6, pp.1914-1924, June 2010

L.Spampanato, M.C.Pera, D.Hissel, G.Spagnuolo: "Performance parametric analysis of a PEMFC model", Proc. of 2010 IEEE International Symposium on Industrial Electronics (ISIE), pp.2041-2046, Bari (Italy), 4-7 July 2010.

- Elettronica di potenza:
- Power management per l'attenuazione dei disturbi alla FC in applicazioni a.c.
- senza controllo attivo

con controllo attivo

A.Giustiniani, G.Petrone, G.Spagnuolo, M.Vitelli "Low frequency current oscillations and maximum power point tracking in grid-connected fuel cell based system", IEEE Transactions on Industrial Electronics, Vol.57, No.6, June 2010, pp: 2042-2053.

- Tecniche per il controllo del flusso di O₂
- Fondamentale per massimizzare l'efficienza globale e evitare che la membrana subisca l'oxygen starvation.

C.A.Ramos-Paja, G.Spagnuolo, G.Petrone, R.Giral, A.Romero: "Fuel cell MPPT for fuel consumption optimization" Proc. of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp.2199-2202, Paris (France), May 30 2010-June 2 2010.

PRIN 2008 – Padova DIE

- Celle a combustibile ad alimentazione diretta basate su membrane polimeriche a conducibilità protonica: modellistica multi-fisica non lineare, ottimizzazione strutturale e funzionale e integrazione circuitale
- Temi di ricerca dell'Unità
 - Modellazione circuitale
 - ✓ Modellazione multifisica 3D
 - ✓ Ottimizzazione

- Trasporto di massa monodimensionale in direzione assiale
- Perdite di attivazione ai catalizzatori (sovrapotenziali)
- Perdite di conduzione ionica nella PEM
- Variazioni spazio-temporali di concentrazione/pressione dei reagenti

- Equazioni elettriche:
- Tensione reversibile (f.e.m.): $E = E^0 \frac{\partial E}{\partial T} \Delta T + \frac{RT}{2F} \log \frac{p_{H_2} p_{O_2}^{1/2}}{p_{H_2O}}$
- Sovrapotenziali di attivazione (A e C): $\dot{\rho}_g^{\pm}(\eta,T,c_i) = j_1 - j_2 = j_0 \left(\frac{p^*_R}{p^*_R} e^{\alpha n F \eta/RT} - \frac{p^*_P}{p^*_P} e^{-(1-\alpha)nF\eta/RT} \right)$
- **Conservazione** di carica (A e C):

$$j_A^{\pm} = \dot{\sigma}_{gen}^{\pm} - \dot{\sigma}_{acc}^{\pm}$$
, $\dot{\sigma}_{acc}^{\pm} = C_a \dot{v}_a$

Conducibilità protonica:

$$\frac{W_{ai}}{\sigma} - \nabla \cdot D_w \nabla \sigma = 0 \qquad \sigma = \alpha \lambda e^{\frac{W_{ai}}{k} \left(\frac{1}{303} - \frac{1}{T}\right)} \qquad D_w = D_o e^{\frac{W_{aw}}{kT}}$$

- Equazioni non elettriche:
- Trasporto di massa ai diffusion layers e agli elettrodi:

$$\mathbf{N} = -D \, \frac{\nabla p}{RT} \longrightarrow N_{ad} = K_a \frac{p_{a0} - p_{ac}}{RT}$$

$$N_{cd} = K_c \frac{p_{c0} - p_{cc}}{RT}$$

Trasporto di H₂O nella membrana:

$$\mathbf{N}_w = -D_w c_s \nabla \lambda + n_w(\lambda) \mathbf{J}/F$$

Back-diffusion Electro-osmotic drag

Trasporto di H₂ nella membrana (crossover)

Modellazione circuitale:

Ideal (Nernst)

Simulazione sulle scale dei tempi brevi

Water vapor partial pressure at catalyst layers

Dynamic fuel cell voltage and PEM conductance

- P. Alotto, M. Guarnieri, F. Moro: "Modeling non-linear passive direct methanol Fuel Cells", COMPEL, Vol. 28 No. 3, pp. 523-539, 2009.
- P. Alotto, M. Guarnieri, F. Moro: "Modeling and Control of Fuel Cell Battery Hybrid Power Systems for Portable Electronics", UPEC 2008 - 43rd International Universities Power Engineering Conference, pp. 1-5, Padova (I), 1-4 Sept. 2008.
- P. Alotto, M. Guarnieri, F. Moro: "A coupled electro-chemical model of a direct methanol fuel cell for portable electronic devices", *COMPEL*, Vol. 28 No. 4, pp. 1005-1019, 2009.
- M. Guarnieri, F. Moro: "A Novel Circuit Model of a Proton Exchange Membrane Fuel Cell", *COMPEL*, Vol. 29, No. 6, pp. 1562-1572, 2010.
- V. Di Noto, M. Guarnieri, F. Moro: "A Dynamic Circuit Model of a Small Direct Methanol Fuel Cell for Portable Electronic Devices", *IEEE Transactions on Industrial Electronics*, Vol. 57, N. 6, pp. 1865-1873, June 2010.

Modello per trasporto di massa e di carica nella PEM

Dominio: 0.2 m x 0.2 m x 2÷3 10⁻⁴ m
 → con reticolo regolare 10⁹ nodi

Modello per trasporto di massa e di carica nella PEM

$$e_a \partial_t^2 \boldsymbol{u} + d_a \partial_t \boldsymbol{u} + \nabla \cdot \boldsymbol{\Gamma} = \boldsymbol{F}$$

$$e_{a} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad u = \begin{bmatrix} V \\ T \\ \lambda \end{bmatrix}, \quad d_{a} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \rho c_{p} & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
$$\Gamma = \begin{bmatrix} -\sigma \partial_{x} V & -\sigma \partial_{y} V & -\sigma \partial_{z} V \\ -k \partial_{x} T & -k \partial_{y} T & -k \partial_{z} T \\ D_{w} \partial_{x} \lambda & D_{w} \partial_{y} \lambda & D_{w} \partial_{z} \lambda \end{bmatrix}, \quad F = \begin{bmatrix} 0 \\ \sigma (\nabla V)^{2} \\ 0 \end{bmatrix}$$

Local increase of current density due to a manufacturing defect Conductivity along the membrane thickness during transient

- PGD: Proper Generalized Decomposition (fully meshless)
- Numerical, adaptive, variable separation

$$\mathcal{L}(\sigma) = \dot{\sigma} - \nabla \cdot D_w \nabla \sigma = 0$$

$$\sigma = \sum_{i=1}^{N+1} \sigma_i(x, y, z, t) = \sum_{i=1}^{N+1} X_i(x) Y_i(y) Z_i(z) T_i(t) =$$

$$\sum_{i=1}^{N} X_i(x) Y_i(y) Z_i(z) T_i(t) + R_x(x) R_y(y) R_z(z) S(t)$$

$$\iiint \sigma^* \mathcal{L}(\sigma) dx dy dz dt = 0 \quad \forall \sigma^*$$

$$\sigma^* = R_x^* R_y R_z S + R_x R_y^* R_z S + R_x R_y R_z^* S + R_x R_y R_z S^*$$

PGD - Separated Iterative solution

PGD - Iterations - nested loops:

$$\frac{\iiint R_x^k R_y^k R_z^k S^k - \iiint R_x^{k-1} R_y^{k-1} R_z^{k-1} S^{k-1}}{\iiint R_x^k R_y^k R_z^k S^k} \bigg| < \epsilon_{RS}$$

$$\frac{\iiint R_x^N R_y^N R_z^N S^N}{\iiint \sum_{i=1}^{N-1} \sigma_i} < \epsilon_{XT}$$

Boundary conditions:

PG - Iterative refinements

PGD - validation

- P. Alotto, M. Guarnieri, F. Moro: "A Fully Coupled Three-dimensional Dynamic Model of Polymeric Membranes for Fuel Cells", *IEEE Transactions on Magnetics*, vol. 46, no. 8, pp. 3257-3260, Aug 2010.
- P. Alotto, M. Guarnieri, F. Moro, A. Stella: "A Proper Generalized Decomposition Approach for Fuel Cell Polymeric Membrane Modelling", *IEEE Transactions on Magnetics, Vol. 47 No. 5*, pp. 1462-1465, May 2011.
- P. Alotto, M. Guarnieri, F. Moro, A. Stella: "Multi-physic 3D Dynamic Modelling of Polymer Membranes with a PDG Model Reduction Approach", *Electrochimica Acta*, in press.

42

Micro-DMFC / Li-ion battery

Simulink model for long-time-scale dynamics

• Simulink model for short-time-scale dynamics

PRIN 2008 – Padova DIE – Optimization

Conflicting goals

- Maximize duration
- Minimize crossover

Parameters

- diffusion/catalyst layer thicknesses
- diffusion/catalyst layer thicknesses
- membrane thickness
- fuel concentration in the tank
- room temperature
- current density

PRIN 2008 – Padova DIE – Optimization

P. Alotto, M. Guarnieri, F. Moro: "Optimal design of micro direct methanol fuel cells for low-power applications", *IEEE Transactions on Magnetics, Vol. 45 No. 3*, pp. 1570-1573, March 2009.

Conclusioni

- Strategia di ricerca sulle PEMFC
 - Ricerche multidisciplinari fortemente correlate implicano competenze multidisciplinari e lavoro di squadra
 - The basic units for advanced researches nowadays are multiskilled teams, no more singles researchers (F. Faggin, Padova, giugno 2011)
 - Grazie a tutti per la pazienza e l'attenzione